Design Space Exploration of Heterogeneous Embedded Processor for the Smart Grid

Rohith Tenneti Seetha Sai, Dr Arindam Mukherjee, Dr Valentina Cecchi, Dr Aravind Kailas 
Department of Electrical Engineering
University of North Carolina Charlotte
Charlotte, U.S.A
Email: {rtenneti, amukherj, vcecchi, aravind.kailas}@uncc.edu
Abstract — Implementing the smart grid will require intelligent interaction between the power generating and consuming devices, which is achieved by installing devices capable of processing data and communicating it to various parts in the grid.  The role of embedded processors will be to achieve high performance in the given real time situations. The embedded processors carry out tasks similar to security encryption, signal processing, power flow calculation etc. which are essential for data analysis and proper data transmission. Depending on the where the embedded processor is in the smart grid hierarchy, the application running on the processor will be different. We show by qualitative analysis that there is a need for a new design in the micro-architecture of the processors.
 The method to develop this processor for the smart grid applications is discussed, this includes identifying the benchmarks, customizing the architecture for them and then finding the optimized configuration for the processor. We come up with a possible design for the embedded processor, for which performance is measured and optimized using a cycle accurate processor architecture simulator.
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I.  Introduction 

Design space exploration for an embedded processor involves finding the values for the design parameters resulting in optimal performance. Optimizing one parameter at a time is a method which cannot be used as there are too many interactions among the parameters. When the design is for a multi core processor the design space increases multiple times. In this paper we aim to develop a design of a possibly heterogeneous multi core embedded processor for smart grid applications. The applications in the smart grid are diverse and require embedded processors which are fundamentally different in the micro-architecture [15]. 
This paper is organized as follows: Section II explains the algorithms for possible applications in the smart grid, showing their computational complexity and processor architecture features required to execute them. Modern embedded processors installed in smart grid devices are not custom made for smart grid applications and hence suffer in performance. These drawbacks are explained in section III and they form the basis for a new improved design. A new design is proposed and is put to test using processor architecture simulators. In section IV two simulators having the ability to simulate a multi core heterogeneous architecture are presented.
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 Benchmarks and the processor simulator tools along with the optimizer based on genetic programming form the basis for design space exploration. Steps involved in the exploration are explained in the form of a flow chart in section V.  In section VI an analysis of the results obtained is shown to justify the obtained design parameter values. 
II. Applications in smart grid
This section introduces the applications that could run at different hierarchies in the smart grid infrastructure. These applications will require a custom designed embedded processor to run efficiently. We first discuss the importance and role of each application in the smart grid and then elaborate on the computational complexities involved.
A. Power Flow (PF) 
PF studies provide complete information of voltage magnitude and angle for each bus in a power system for specified load and generator real power and voltage conditions [12].
In order to lessen the burden on one central server computing the entire power requirements, distributed embedded systems calculate and control the local power needs. 

As an example we provide the algorithm to solve a power flow problem using the Newton Raphson method, which involves computations like iteratively calculating the inverse of the matrix.

Ax12 + Bx22  = C1
Dx12 + Ex22  = C2  

C = [C1 C2]
1.
Initial values to voltage angles and magnitudes, generally the angles are set to zero and the magnitudes to 1.0 p.u.

2.
 Calculate the power balance matrix with the current voltage angle and magnitude. (F)

3.
The Jacobian of the power balance matrix is calculated at the current voltage phase and magnitude values. (J)

4.
The change in voltage magnitude and angle is calculated by J-1 * [C-F]
5.
The voltage magnitude and angle are updated and the steps 2 to 4 are repeated until the change in step 4 is small enough [4].
According to [5], in solving the power flow using the newton raphson method the computation effort in calculating the elements of the jacobian varies as O(n), the required factorization varies as O(n1.4) and that of the necessary repeat solution varies as O(n1.2). As there are lengthy trigonometric calculations involved in calculating the elements of the matrix O(n) is also a notable factor when compared to O(n1.4) and O(n1.2). The storage requirements are bound to grow at O(n1.2).

Power flow calculations involve compute intensive matrix inversion and when dealing with large data sets, it also requires faster data access. The computations could be on integers or floating point values, here is the need for separate integer and floating point units in the architecture for faster execution. The advanced methods of matrix inversion method involve parallel execution of the code. The code would also have less branch instructions eliminating the need for a separate branch prediction unit and hence reducing the power and area requirements. The results of power flow calculations are used for resource allocation which makes a case for real time deadlines and hence lower latency for the executing instructions.

B. Signal processing

The signals received from the sensors placed in the grid to send statistics about the usage are to be processed continuously and the large size of the grid makes it necessary to have signal processing at different tiers. Embedded processors will have algorithms like fast fourier transform (FFT) running on them. Pseudo code for the FFT is provided below.
FFT (A,n,w)

A is a Vector of length n

n is a power of 2

w is a primitive n-th root of unity 

Vector A represents a polynomial:

 A(z) = A[1] + A[2]*z + …… + A[n]*z(n-1)
The value returned is a Vector of the values: [a(1),a(w),….,a(w(n-1))] – Computed via a recursive FFT algorithm

If n = 1 then


Return A

Else


Aodd ( Vector (A[1], A[3],…..,A[n-1])

Aeven ( Vector (A[2], A[4],…….,A[n])

Veven ( FFT(Aeven, n/2, w2)

Vodd ( FFT(Aodd, n/2, w2)

V (Vector(n) #Define a vector of length n

For i from 1 to n/2 do


V[i] ( Veven[i] + w(i-1) * Vodd[i]


V[n/2 + i] ( Veven[i] – w(i-1)*Vodd[i]

End do

Return V

End if

FFT takes O(nlogn) operations to complete the computation. For the computational efficiency, in the for-loop we build up the powers of w using just one multiplication each pass through the loop. Similarly for the recursive FFT calls, w2 should be computed only once.

By using methods such as the loop unrolling the FFT algorithm can be parallelized and an architecture supporting the parallel implementation such as a single instruction multiple data (SIMD) system can be used to improve the performance in terms of speed of execution. When the data being operated on is high, there develops a need for a processor with good multi-level cache system.

Apart from FFT, there could be algorithms such as finite impulse response (FIR), infinite impulse response (IIR) etc which could possibly run on the embedded processor. Depending on the place where the embedded processor is installed in the grid, the algorithm for the signal processing could differ and hence the processor with the best microarchitecture to implement the corresponding algorithm has to be designed.
C. Security 

Electricity distribution network will spread over a considerably large area, e.g., tens or hundreds of miles in dimension, thereby increasing the risk of potential hackers accessing sensitive information. Therefore physical and cyber security from intruders is a necessity [11].

Our focus here will be on a possible security encryption system that could be used in the process of data packet transmission and will require an embedded processor to handle the task efficiently.

Here is the pseudo code for one such cipher encryption method called Blowfish. It is shown to be efficient whenever there is continuous data stream or packet stream and importantly efficient to implement on a microprocessor [1].

Cipher Working:

· Consists of two parts – key expansion and data-encryption

· Key expansion converts a key of at most 448 bits to several subkey arrays totaling 4168 bytes.

· Data Encryption is 16 rounds. Each round consists of a key dependent permutation and a key-data dependent substitution. All operations are XORs and addition on 32-bit words (efficient on intel and motorola architectures).

Subkey:

· P-Array: 18 32-bit sub-keys

· S-boxes: 4 boxes with 256 entries of 32bit numbers.

Encryption:

Input is a 64-bit data element (x).

Divide x into two 32-bit halves: x L, xR

For i = 1 to 16:

x‑L = x L XOR Pi

xR = F(x L) XOR xR
Swap x L and xR
Next i

Swap x L and xR (Undo the last swap.)

xR = xR XOR P17

x L = x L XOR P18

Recombine x L and xR
Function F: Divide x L into four eight-bit quarters: a, b, c, and d

F(x L) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232

Decryption:

Same process with P-Array is used in reverse order.

For fast implementation the loop can be unrolled and the sub-keys stored in the highest level cache. Also, since the number of rounds does not change with the number of blocks the computation complexity for blowfish is O(n). 

Major modifications have been proposed by various authors, which help blowfish retain the avalanche effect desired in an encryption algorithm but make it possible to execute compute intensive steps in parallel [2].

GPU kind of architecture has been proposed to implement blowfish in an optimized and efficient way in [3]. GPU architecture which uses the SIMD instruction format considerably speeds up the computations when implementing the same function on a large data set which is not interdependent.

III. State of the art embedded processors for smart grid
In this section we do a qualitative analysis of how the state of the art embedded processors perform when the algorithms having different computing requirements as described in the previous section run at the same time. 
A. Intel Atom
· In order execution. The processor can do nothing while it is waiting for a cache miss or a long-latency instruction, unless another thread can use its resources in the meantime. If the algorithm exhibits high instruction level parallelism an in-order core would be highly inefficient and way slower.
· Memory access has long latencies for floating point and SIMD instructions. If algorithms like blowfish encryption were implemented in SIMD fashion which has faster execution time, this processor would produce poor results.

· The instruction fetch rate is less than 8 bytes per clock cycle in most cases. This is insufficient if the average instruction length is more than 4 bytes.

· The maximum throughput of two instructions per clock cycle can only be achieved if the code is optimized specifically for the Atom and instructions are ordered in a way that allows pairing [10].
B. ARM (Cortex A8)
· In order execution and Multi core unavailability, both the processors have in-order pipelines to decrease the power and area consumption but in case of exploiting the instruction level parallelism available this is a deterring factor. Availability of multiple cores greatly increases the speed of execution but also increases the power requirement. In cases such as parallel implementation of matrix inversion, multi core processors will be beneficial for the performance.
· Branch prediction when not utilized due to lesser percentage of branch instructions is a waste in terms of area and power consumed.
· Deep pipelines also reduce the latency we are looking for in real time applications.
 Based on the characteristics of the processors, we observe that having an in-order core in the micro-architecture could lead to long latencies even while data level parallelism exists. Having a single out-of-order core could be detrimental for the performance while operating on data having less or no instruction level parallelism. In order to solve the problem in hand we propose a multi core heterogeneous architecture capable of executing instructions in both out-of-order and in-order manner. 
IV. PROCESSOR SIMULATORS
From the discussion in the previous section we understand that although the state of the art processors are capable of performing the computations required in the smart grid, we can considerably improve the performance by customizing the core architecture according to the requirements. This idea of core customization requires a possible heterogeneous design. 

In order to observe the performance on the heterogeneous configuration we first look into two available processor simulators Casper [9] and MV5 [6].  
A. Casper
CASPER – A Sparc V9 based Cycle accurate chip-multithreaded Architecture Simulator for Performance, Energy and aRea analysis [9]. Casper models the open sourced Sun’s Ultra Sparc T1 architecture model in C++. The modular coding style in CASPER gives the flexibility to modify parts of code and customize the working.
The pipeline has six main stages: instruction fetch (F-stage), thread schedule stage (S-stage), branch and decode stage (D-stage), execution stage (E-stage), memory Access stage (M-stage) and finally write back stage (W - stage). The instruction fetch unit has the instruction address translation buffer, instruction cache and thread scheduling state machine. The instruction address translation buffer and the instruction cache are shared by the hardware threads. There are mainly two scheduling schemes employed. The small latency thread scheduling employed in CASPER allows the instructions from ready threads to be issued into the D-stage at every clock cycle. Long latency scheduling scheme allows one active thread to continue its execution till it is complete or interrupted by higher priority threads.

The decode stage implements full SPARCV9 instruction set decoder; it also supports the special set of hyper-privileged registers and instructions used by hypervisor – the virtualization layer implemented in UltraSPARC processors.

The Execution unit has the RISC 64-bit ALU, integer multiplier and divider. Load store unit (LSU) has two modules M-stage and W-stage. It also includes the data TLB (D-TLB) and data cache (D$). D-TLB size and hit latency, along with D$ size, associativity, block-size and hit latency, are also configurable in CASPER. The missed instruction list control the I$ miss path, while that of the D$ is controlled through load miss queue (LMQ) which maintains cache misses separately for each thread and are similar in organization to that of UltraSPARC T1.

TABLE I shows the various design parameters that can be configured in the simulator.

TABLE I.  Configurable design parameters in CASPER

	Parameter
	Range
	Description

	Cores 
	1: NC 
	Number of cores on chip 

	Strands 
	1:NS 
	Hardware threads per core 

	FPU 
	1 or 0 
	FPU can be shared between the cores or threads 

	I$_C/D$_C 
	4:64 (KB) 
	Size of L1 I-D cache 

	I$_B/D$_B 
	4:64 
	Size L1 I-D cache block 

	I$_A/D$_A 
	2:8 
	Associativity of L1 I-D cache 

	I$/D$ Hit Latency 
	2:4 clock cycles 
	Measured in Cacti  for 45nm technology 

	IFQ 
	1NS:8NS 
	Size of IFQ

	MIL 
	1NS:8NS 
	Size of MIL 

	BBUFF 
	4NS:16NS entries 
	Size of Branch Address Buffer 

	LMQ 
	1NS:8NS 
	Size of LMQ 

	DFQ 
	1NS:8NS 
	Size of Data Fill Queue 

	SB 
	1NS:16NS 
	Size of Store Buffer (Store-ordering) 

	L2$_C 
	256KB:16MB 
	Size of L2 cache 

	L2$_B 
	8:24 
	Size of L2 cache block 

	L2$_A 
	4:16 
	Associativity of L2 cache 

	L2$_NB 
	4:16 
	Number of L2 cache banks 

	L2_FB 
	8:16 
	Size of L2 cache Fill Buffer 


B. MV5
MV5 offers all the customizations available in MPTLsim (simulator which has the multi core out of order simulation ability) and CASPER except full system simulation. Apart from the usual configuration abilities, it provides array style SIMD (Single Instruction Multiple Data) cores, coherent caches and OCN (On Chip Network). MV5 uses its own runtime threading library to manage SIMD threads. The feature of MV5 that stands out is its ability to simulate in order and out of order cores to be on the same chip.
For the accurate power modeling MV5 uses Cacti for calculating dynamic energy of reads, writes and leakage power for the caches. Energy consumption of the cores is calculated using watch. The pipeline energy is divided into seven parts including fetch and decode, integer ALUs, floating point ALUs, register files, result bus, clock and leakage. Dynamic energy is accumulated each time a unit is accessed [6][8].
V. Design space exploration 

This section explains the major steps involved in the design space exploration process. 
· The application is first identified.
· To identify the benchmark codes to run on the embedded processor, we examine the signals and the kind of data that the embedded processor will potentially handle.

· The computations in the benchmark code are profiled and the complexities are calculated, to identify the type of execution units required in the processor.

· A cycle accurate simulator having the capability to test and run the benchmarks to provide performance statistics like power, cache hits/misses, cycles per instruction (CPI), Area, latency, throughput etc. is selected.

· Depending on the optimizing algorithm chosen (Genetic Algorithm, Linear Regression etc.) the statistics from the simulator are provided to the optimizer for the corresponding design parameters. The optimizing algorithm finds best fit the relation between the design parameters and performance results. 

· The simulator and the optimizer are run in a loop to find the best possible configuration

A flow chart explaining the process of design space exploration is shown in FIGURE I.
Figure I.  Design Methodology flow chart
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Design space exploration generally consists of a multi-objective optimization problem. Several heuristic techniques have been proposed so far to address this problem [13] [14]. Among those heuristics, evolutionary or sensitivity based algorithms represent the most notable, state-of-the art techniques.

Genetically Programmed Response Surface (GPRS) tool [7] was used to produce an analytical model showing a relation between the performance metric and the design parameters. The set containing the design parameters is large and the number of experiments required to be carried out covering all the possible combinations is a time consuming task. 
This tool requires equally spaced points over the entire design space in order to come up with an equation relating all the parameters. The GPRS tool uses genetic programming to manufacture an equation which is non-linear in nature. The final equation contains the parameters which affect the performance metric the most. 

Exhaustive search with the help of this final equation gives the values of design parameters presented in the results section.

VI. RESULTS

Results obtained on the MV5 simulator, with FFT and blowfish encryption benchmarks are shown in this section. The optimal design parameters were found using genetic programming methods.
FFT was run on SIMD cores in order to exploit the property of its code i.e., the same operation could be performed on a large data set simultaneously. Fractal APIs which are supported by MV5 are used in order to stream the data for the SIMD cores.

Algorithm used for the blowfish encryption exhibits a similar property in which the same operation is performed repeatedly on the data set. Since data is interdependent, executing it on SIMD cores doesn’t improve the performance. Therefore out-of- order cores were used to exploit the instruction level parallelism that was observed.
TABLE II.  Simulation of equally spaced design points

	Design Parameter
	Equally spaced points

	CPUfreq Ghz
	3.5

2
32
32
4
8
32
8
1024
64
2
16
1024
4
2
4
1

	3.5
	3.5
	3.5
	1.5
	3
	3

	d$assoc
	1

32
32
4
8
32
8
1024
64
2
16
1024
4
2
4
1
	4
	4
	1
	4
	4
	4

	d$banks
	2
	4
	2
	2
	2
	2
	4

	d$size KB
	32
	32
	8
	8
	32
	32
	8

	d$blksize B
	32
	32
	32
	32
	32
	32
	32

	i$assoc
	4
	1
	4
	2
	4
	1
	1

	i$size
	8
	16
	16
	32
	32
	16
	32

	i$blk KB
	32
	32
	32
	32
	32
	32
	32

	l2assoc
	8
	2
	1
	1
	1
	1
	1

	l2size KB
	1024
	1024
	512
	512
	1024
	1024
	512

	l2blksize B
	64
	64
	64
	64
	64
	64
	64

	l2banks
	2
	8
	8
	4
	2
	4
	2

	Hardware threads
	16
	4
	4
	16
	4
	16
	8

	Phymemsie MB
	1024
	2048
	1024
	1024
	4096
	2048
	2048

	warpsize
	4
	2
	8
	2
	4
	2
	8

	oocpu
	2
	1
	1
	8
	8
	1
	8

	simdcpus
	4
	1
	4
	1
	8
	8
	1

	Maxthreadblksize
	1
	2
	4
	1
	1
	8
	8

	CPI
	4.154748
	5.405957
	4.646261
	4.014319
	1.564512
	3.905695
	2.162634


· Equation resulting from Genetic Programming methods

CPI = ( 1.51787 + ( 0.00170688 * ( ( ( 0.36742 * ( x12 / x11 ) ) - ( ( ( 85.1018 * ( x6 / x11 ) ) - ( -3.52226 * ( x0 / x1 ) ) ) + ( -530.729 * x0 ) ) ) + ( 296.724 * ( x6 / ( x12 * x14 ) ) ) ) ) );                        - (Eq. 1)
cpufreq
= x0;

d$assoc  
= x1;

i$size
= x6;

l2$banks 
= x11;

hwtc
 
= x12;

warpsize
= x14;

Values obtained from exhaustive search on parameters 
value of cpufreq 

x0: 4

value of d$assoc 

x1: 8

value of d$banks 

x2: 4

value of d$size 

x3: 8

value of d$blk 

x4: 32

value of i$assoc 

x5: 4

value of i$size 

x6: 64

value of i$blk 


x7: 32

value of l2$assoc 

x8: 1

value of l2$size 

x9: 512

value of l2$blk 

x10: 64

value of l2$banks 

x11: 2

value of hwtcs 

x12: 16

value of phymemsize 

x13: 1024

value of warpsize 

x14: 4

value of oo 


x15: 2

value of simd 


x16: 2

value of maxthreadblksize 
x17: 1

CPI (equation) 
: 1.00164

CPI (Simulation)
: 1.4671

The equation resulting from the genetic programming methods is an approximation to show what design parameters in the micro-architecture have a telling difference in the CPI. From Eq. 1, we observe that, due to the large data sets, the cache parameters have a major contribution towards the performance. The FFT algorithm is run on the SIMD cores hence the warp size is one of the deciding factors for the CPI.
All the possible values for the design parameters are then plugged into the Eq. 1 to show that, mathematically CPI of 1.00164 is the minimum possible. Simulation result for the same design parameters was found to be 1.4671. This 30% error is a result of considering less than 0.01% of the entire design space. The error is considered to reduce to 20% when the sample simulations are run on 0.1% of the entire design space [7].
VII. Conclusion and future work
The equation resulting from genetic programming methods is a good approximation to the actual CPI. Eq.1 does not include all the design parameters. During the evolution process in the genetic algorithm the variables which have lesser impact are disregarded. This particular process helps in keeping the equation simple but at the cost of accuracy. However the equation reveals important information regarding the micro-architectural features which are algorithm and application dependent. For an embedded processor running security encryptions and evaluating FFT on the signals at the same time in the smart grid, we propose the above processor model to be a possible solution. 

Development of the benchmark suite considering even wider applications but specific to the smart grid is a research of interest. The benchmark suite will then help achieve a better design of the embedded processor. 
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