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A Bayesian regression analysis of truck drivers’ use of cooperative adaptive
cruise control (CACC) for platooning on California highways

Shiyan Yanga , Steven E. Shladovera, Xiao-Yun Lua , Hani Ramezania, Aravind Kailasb, and
Osman D. Altanc,d

aPartners for Advanced Transportation Technology (PATH), Institute of Transportation Studies, University of California, Berkeley,
Richmond, CA, USA; bVolvo Group North America, Costa Mesa, CA, USA; cFHWA, Washington D.C., USA; dGlobal Smart System, LLC,
Troy, MI, USA

ABSTRACT
Cooperative Adaptive Cruise Control (CACC), as an advanced version of adaptive cruise con-
trol (ACC), automates brake and engine controls based on the information received from
wireless V2V communications and remote sensors, enabling smaller vehicle-following time
gaps. It can improve the safety of vehicle platooning and increase fuel savings. As an exten-
sion of our previous investigation of truck drivers’ acceptance of CACC, this case study
investigates factors affecting the use of CACC for truck platooning. Nine commercial fleet
drivers were recruited to operate two following trucks in a CACC-enabled string on freeways
in Northern California. We analyzed the usage of CACC time gaps and its correlation with
truck drivers’ stated preferences for these time gaps, and we found that the highest pre-
ferred Gap 3 (1.2 s) was used the most. Moreover, a Bayesian regression model was built to
show that truck drivers are more likely to disengage CACC when driving in low-speed traffic
or on downgrades where this CACC could not provide sufficient braking. In high-speed traf-
fic or on upgrades, truck drivers are more likely to engage CACC, particularly at Gap 3.
Truck position, however, does not affect truck drivers’ time gap selection. The findings
encourage the adoption of CACC in the trucking industry through implementing driver-pre-
ferred time gaps and responsive braking systems, and operating on routes with minimal
interference to truck speeds.
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Introduction

Cooperative adaptive cruise control (CACC) is an
extension of adaptive cruise control (ACC) by incor-
porating dedicated short-range communications
(DSRC) to enable wireless vehicle-to-vehicle (V2V)
communications. The CACC at SAE Level 1 can auto-
mate the longitudinal control of the following
vehicle(s) based on other vehicle’s information (e.g.,
velocity, acceleration) transmitted through V2V wire-
less communications and remote sensors (e.g., radar
and lidar). It can maintain a desired time gap between
the vehicles in a string to avoid human delays in
speed control, therefore enabling safe but smaller time
gaps between these vehicles (Shladover et al., 2015).
Due to the smaller following time gaps, increase in
CACC market penetration rate is expected to generate
macro-level benefits on transportation corridors, such
as reducing fuel consumption and emissions

(Browand et al., 2004; McAuliffe et al., 2018), improv-
ing traffic flow stability (Liu et al., 2018; van Arem
et al., 2006), and relieving traffic congestion (Arnaout
& Arnaout, 2014; Lunge & Borkar, 2015; Ramezani
et al., 2018).

Apart from the technical maturity, drivers’ accept-
ance of CACC is another critical factor that can affect
the market penetration rate of this technology.
Although CACC is designed to support drivers’ longi-
tudinal control and reduce driver stress, fatigue, and
judgment errors, it may also have negative effects,
such as performance degradation, overreliance, and
distraction (Dey et al., 2016). For example, in the
interviews of some truck drivers who did not have
prior direct experience with CACC, these drivers
expressed negative opinions (e.g., low expectance of
safety benefits, less interest in driving, and fear of
causing crashes; Neubauer et al., 2019) or reluctant
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attitudes (e.g., lack of trust, fear of job redundancy,
and interference with job satisfaction and pleasure;
Bhoopalam et al., 2021) toward using CACC.
However, Castritus Dietz et al. (2020) found that gain-
ing extensive experience with truck platooning on
highways clearly increased truck drivers’ acceptance of
such technology, suggesting that truck drivers without
on-road experience with CACC could be biased nega-
tively toward this technology. Therefore, it is neces-
sary to investigate truck drivers’ acceptance and actual
usage of CACC in on-road settings to support more
objective decisions about the deployment of
this technology.

Although multiple truck platooning projects dem-
onstrated CACC’s technical capacities (e.g., SARTRE,
GCDC, Energy ITS, and European Truck Platooning
Challenge; Bergenhem et al., 2012), only limited on-
road studies investigated truck drivers’ experience
with specific CACC time gaps. Previously, we found
the highest preference for the medium time gap set-
tings (1.2 s and 1.5 s) from the truck drivers, because
of their intention to avoid the blockage of their road
view (by the trailer of the preceding truck) at small
time gaps and cut-in vehicles at the longest time gap
(Yang et al., 2018). Another study on German high-
ways, however, found that truck drivers quickly
adapted to the short space gap (15m) in a level-2
two-truck platoon despite their initial concerns
(Castritius, Hecht, et al., 2020). Also, passenger car
drivers felt comfortable with the short time gap (<
1 s) in a CACC-enabled two-vehicle string
(Nowakowski et al., 2010). Since drivers may prefer to
different gaps in different scenarios, we need to study
their gap selections for truck platooning in public traf-
fic. This type of empirical study has been rare.

Nevertheless, abundant studies about the use of
ACC may shed light on the use of CACC by truck
drivers. Drivers, in general, would like to use shorter
ACC time gaps (less than 1.3 s; Marsden et al., 2001),
but their selection of ACC time gaps can also be
influenced by a range of driver factors, including age,
experience and knowledge. For example, younger
drivers prefer shorter ACC time gaps (Marsden et al.,
2001); drivers who have more experience with ACC
are more aware of its limitations (Larsson, 2012) and
use the shortest time gap more often (Pereira et al.,
2015); drivers who are unaware or unsure of ACC
limitations are more likely to use ACC on curvy roads
or when tired (Dickie & Boyle, 2009); and bus drivers
under distraction should use longer ACC time gaps to
remain safe (Lin et al., 2009). In addition to these
driver factors, driving environments, such as high-

speed road and low-density traffic, can encourage the
use of ACC (Strand et al., 2011) with pleasure (de
Winter et al., 2017). However, drivers can be discour-
aged by the technical problems of ACC, including
occasional clumsiness, hard braking caused by vehicle
cut-ins, and unexpected disengagements and accelera-
tions (de Winter et al., 2017). All these factors may
also influence truck driver’s actual use of CACC
for platooning.

This paper, based on the same case study investi-
gating truck drivers’ acceptance of CACC (Yang et al.,
2018), aims to analyze the factors that affect truck
drivers’ actual use of CACC in truck platooning on
public highways. Commercial fleet drivers were
recruited to operate three Class 8 Volvo trucks
equipped with CACC on public highways in Northern
California. They were allowed to select any time gaps
in the test drive, and they were responsible for steer-
ing wheel control during the engagement of CACC.
The analysis of their usage of CACC was used to
answer several research questions.

1. Whether some CACC time gaps were used more
than others for truck platooning during the test
drive? If so, which time gap was used the most?

2. Whether truck drivers’ usage of CACC time gaps
was associated with their stated preference for
these time gaps?

3. How do factors such as truck speed, traffic dens-
ity, road grade, and truck position affect the use
of CACC for truck platooning on highways?

Since these factors may encourage or discourage
the use of CACC for truck platooning on highways,
understanding their impacts provides valuable insight
into the design and implementation of CACC systems
for appropriate contexts and sets reasonable expecta-
tions for the CACC-related benefits on the trucking
industry and traffic environments.

Method

The on-road experiment was described in Yang et al.
(2018) and is summarized here. This study was
approved by the Committee for Protection of Human
Subjects at the University of California, Berkeley.

Participants

Nine professional male fleet truck drivers from the
U.S. (7) and Canada (2) participated in this on-road
experiment. We were only able to recruit nine
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participants because of the shortage of truck drivers in
the U.S. and the limited flexibility of their working
hours. These truck drivers were relatively senior
(mean age ¼ 48, SD ¼ 12.6) and had relatively long
careers as commercial vehicle operators (mean years
¼ 21.1, SD ¼ 14.1), but they only had very limited
prior experience with ACC (1.4/7), collision warning
systems (2.1/7), and truck platooning (0.7/7) accord-
ing to the background questionnaires (0 indicates
“Not Familiar at All” while 7 indicates “Very familiar”
in the Likert-type scale; Yang et al., 2018).

Test trucks and CACC system

Three Volvo Class 8 trucks (see Figure 1 left) with
empty trailers were used in the study. All trucks were
equipped with CACC systems so that they can
exchange control-related messages with each other via
the DSRC-based V2V communication (See Figure
1 right).

The CACC system can be engaged, disengaged, and
resumed using a control stalk behind the left side of
the steering wheel (see Figure 2 left). It can also be

ceased by pressing a red emergency disengage button
(see Figure 2 middle) or pressing the brake pedal. The
CACC user interface installed on the top of the truck
instrument panel (see Figure 2 middle) presented
elementary status information about the other trucks
in the string and was used to select the time gap and
driving mode (see Figure 2 right). The details of using
the control stalk, emergency disengage button, and
CACC user interface can be found in Yang
et al. (2018).

Time gap setting

When the V2V communication signal was not avail-
able for an extended time (20 s or more), the control
mode switched automatically from CACC to ACC.
The time gap settings for CACC and ACC modes are
listed in Table 1, and they were chosen to match
some of the CACC time gaps tested on passenger cars
in previous studies (Nowakowski et al., 2010). The
ACC time gaps listed in Table 1 were modified and
still much smaller than default ACC time gaps in the
production vehicles. For example, the shortest default

Figure 1. The Volvo Class 8 trucks (left) and the V2V communication system (right).

Figure 2. The CACC control stalk (left), truck cabin interior with the CACC user interface and emergency disengage button (mid-
dle), and the CACC user interface layout (right).

Table 1. The time gaps and corresponding distances in CACC and ACC Modes.
Time gap CACC time gap (s) Following distance (m) at 55mph (88.5 km/h) ACC time gap (s) Following distance (m) at 55mph (88.5 km/h)

1 0.6 14.8 1.1 27.0
2 0.9 22.1 1.3 32.0
3 1.2 29.5 1.5 36.9
4 1.5 36.9 1.7 41.8
5 1.8 44.3 1.9 46.7
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ACC time gap for the Volvo trucks was set by the
manufacturer as 2.0 s.

The experiments had to comply with all applicable
traffic laws based on the requirements from the pro-
ject sponsors and the Institutional Review Board. This
meant that the driving speeds should not exceed
55mph (�90 km/h), which is the maximum legal
speed for trucks in California.

Test route

The test route consisted of state and interstate freeways
(dual carriageway highways with access limited to dedi-
cated entrance/exit ramps) in Northern California. It
started from the UC Berkeley Richmond Field Station
(RFS) in Richmond, via I-580 (to Emeryville), SR 24 (to
Walnut Creek), I-680 (to Pleasanton), I-580 (passing
Livermore and merging into I-5) and ended around
Westley on I-5 (see Figure 3).

After arriving at Westley, the drivers took a short
break at a parking area near a truck stop and then
returned to RFS via the same route. The trucks usu-
ally took more than 3 hours between 10:00 AM and
2:30 PM to complete a round trip between Richmond
and Westley without heavy traffic delay.

Experimental procedure

Participants received the study introduction, signed the
consent form, and finished the background question-
naire at UC Berkeley RFS. Then they were instructed to
establish familiarity with the controls and time gaps of
CACC on the highway between Emeryville and Walnut
Creek (SR 24). After passing Walnut Creek, they could
choose CACC time gaps for truck platooning until
arrival at Westley. Due to safety concern, participants
were instructed by the experimenters to do coordinated
lane changes using the voice radio communication. To
ensure a clear space in the destination lane for all the
trucks, the driver of the last truck was instructed to

deactivate CACC and start changing lane to block any
other vehicles approaching from behind, so that the
other two trucks could complete their lane changes
unimpeded. After a short break at Westley, participants
drove back to Walnut Creek in a different following
truck and returned to RFS to complete the post-experi-
ment questionnaire (see Figure 4).

Data analysis

A PC-104 computer stored inside the truck cab was used
to record the vehicle and driver behavior data from 100
channels at a sampling rate of 50Hz. Among these chan-
nels, we only analyzed driving mode (i.e., manual, ACC,
CACC), CACC time gap, vehicle speed, road grade, and
GPS data collected during the outward trip (from
Walnut Creek to Westly) and return trip (from Westly
to Walnut Creek; see Figure 4), after excluding the famil-
iarization stage of CACC between RFS and Walnut
Creek. Road grade is expressed as the ratio of the vertical
elevation difference (m) to the horizontal distance
(100m) traveled. For example, road grade 5% means 5m
of elevation change over 100m distance traveled.

The data collected in each trip was divided into
consecutive 1-min epochs. We calculated the most fre-
quent driving mode, and the road grade, truck speed,
and GPS coordinates averaged over each epoch. If the
most frequent driving mode was CACC, we calculated
the dominant CACC time gap during the 1-min
epoch. The traffic density in each epoch was estimated
by “occupancy”, retrieved from the Caltrans
Performance Measurement System (PeMS; https://
pems.dot.ca.gov/). Occupancy is defined as the frac-
tion of time (0� 100%) over a given period that the
inductive loop detector detects a vehicle above, which
is related to the number of vehicles passing the
detector over this period and average vehicle speed
(Jia et al., 2001). It is recorded at each detector station
on the highway. The occupancy corresponding to
each epoch was retrieved from the closest detector sta-
tion (to the average GPS coordinates of this epoch)
over a 5-min period that overlaps with this epoch.
The data processing was completed in Python 3.7.

All epochs were localized on the map using the “3D
map” function in Microsoft Excel (see Figure 5). 57 ACC
epochs (due to V2V communication faults preventing
CACC operation) and 24 epochs with low vehicle speed
(<20km/h) were removed, and the remaining 1,128
epochs were used for analysis. For each participant, the
number of epochs using Gaps 1� 5 was normalized by
the total number of epochs (excluding manual epochs) to
estimate the “epoch percentage”, which was compared

Figure 3. The test route between RFS and Westley. The red
dots indicate the cities along the test route.
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among Gaps 1� 5 by the Kruskal-Wallis test with the
Dunn test (Dinno, 2017), showing the mostly used time
gap. Also, the correlation between the epoch percentage
and the driver’s preference for time gaps was analyzed by
Spearman’s coefficient.

A multi-level Bayesian regression model (BRM) was
used to analyze the effects on the use of CACC. The BRM
estimates the posterior distributions of the effects (param-
eters), which include the population-level effect (assumed
to be the same across observations) and group-level effect
(assumed to vary across the grouping variables). They are
equivalent with the fixed effect and random effect in the
frequentist model (B€urkner, 2018). The population-level
effects are indicated by the coefficients in Equation (1),
including the effects of truck speed (bspeed), occupancy
(boccupancy), road grade (bgrade), and truck position
(bposition), and the group-level effect is indicated by the
coefficient of the participant ID (upid). These parameters
are linearly combined with the independent variables to
generate the linear predictor g (see Equation (1)), which
relates to the mean (l) of the probability distribution
function of the response variable (y) via the logit function
(see Equation (2)). The response variable is the use of
CACC in each epoch, belonging to one of the six catego-
ries: manual driving (indicating zero use of CACC) or
using Gaps 1� 5. It follows a categorical distribution (see
Equation (3)), in which the mean (lj) represents the prob-
ability of the jth category, with the sum of the probabilities
of all categories as 1 (see Equation (4)).

gj ¼ b intercept þ bspeedXspeed þ boccupancyXoccupancy þ b gradeXgrade

þ b positionXposition þ upidZpid (1)

logitðli, jÞ ¼ gi, j (2)

yi, j � Categoricalðli, jÞ (3)
X

j

li, j ¼ 1 (4)

, where X and Z are the vectors of the variables
observed in all epochs. Xspeed is the truck speed (km/

h); Xoccupancy is the occupancy (%); Xgrade is the road
grade (%;- downhill, þ uphill); Xposition is the truck
position (2nd or 3rd); and Zpid is the participants’ ID
(1� 9). i means the ith observation (1, 2, … , 1128)
and j means the jth category of the response variable.

The posterior distributions of the population-level
effects (b) were estimated by the NUTS (No-U-Turn
Sampler) sampling algorithm (a variant of
Hamiltonian Monte Carlo; Hoffman & Gelman, 2014)
using R package “brms” (Bayesian regression models
using Stan; B€urkner, 2018). The default improper flat
prior was chosen as the prior of all b parameters. The
NUTS algorithm approximated the posterior distribu-
tion of every b using four Markov chains with 2000
samples per chain. The first 1000 samples were used
to tune the parameters of the NUTS sampling algo-
rithm, and the total 4000 remaining samples were
used to estimate the posterior distribution of each b:
Every b was summarized using the mean (“Estimate”)
and the standard deviation (“Est. Error”) of the pos-
terior distribution with two-sided 95% credible inter-
vals (“Lower 95% CI” and “Upper 95% CI”; see Table
2). The Bayesian credible interval is the interval that
has a 95% probability to contain the true value of a
parameter. The prediction accuracy of the fitted BRM
was estimated by the efficient approximate leave-one-
out cross-validation (LOO) using Pareto smoothed
importance sampling (PSIS; Vehtari et al., 2017). The
statistical analyses were completed in R 4.0.5.

Results

CACC use and preference

The epochs of each trip were depicted as colored dots
on the map based on GPS coordinates, and color-
coded (Manual¼ black, ACC¼ purple, CACC Gap
1¼ dark red, Gap 2¼ red, Gap 3¼ green, Gap
4¼ blue, and Gap 5¼ dark blue; see Figure 5).
Participants P1 and P2, P3 and P4, P5 and P6, and P7
and P8 were paired to drive the second and third

Figure 4. The flow chart of the experimental procedure. Only the data collected in the orange sections were processed
and analyzed.
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trucks on the same trips, whereas P9 did not have a
teammate and only drove the second truck.

The CACC usage was significantly different among
the time gaps, according to the KW test on epoch per-
centage (v2 ¼ 13.6, df ¼ 4, p ¼ .001). The Dunn test
showed that participants used Gap 3 (mean ¼ 43.3%,
median ¼ 40.0%) significantly more than other time
gaps (Gap 1: mean ¼ 26.0%, median ¼ 4.5%, p ¼

.009; Gap 2: mean ¼ 10.3%, median ¼ 7.1%, p¼.003;
Gap 4: mean ¼ 8.0%, median ¼ 7.1%, p<.001; Gap 5:
mean ¼ 12.5%, median ¼ 2.7%, p ¼ .001).

Participants ranked their preference for CACC time
gaps in the post-experiment questionnaire (Yang
et al., 2018). The percentage of the time gap usages
negatively correlated with the ranking order of the
time gaps: the Spearman correlation coefficient was
�0.63 with a 95% confidence interval (–0.83, �0.36).
Since smaller ranking orders indicate higher preferen-
ces, participants had lower usages of their less pre-
ferred time gaps (see Figure 6).

Bayesian regression analysis

We validated the prediction accuracy of the fitted
BRM according to Pareto k estimates using “LOO”.
99.8% of the (1,126) observations were good (k in
(-1, 0.5]) and 0.2% (2) observations were OK (k in
(0.5, 0.7]).

The BRM offered by “brms” needs a reference cat-
egory of the response variable, which was the manual
(m) category here. If an independent variable shows a
positive effect (þb) on Gap i, this variable, when it
increases (as a continuous variable) or changes from
the reference level (as a categorical variable), leads to
a higher probability of using Gap i than driving
manually (reference category), and vice versa.

The parameters b, however, did not quantify the dir-
ect effects of the population-level variables on the
response variable. We used brms to calculate the
“conditional effect” of each population-level variable on
the response variable, with all other variables fixed,
either at a value (e.g., occupancy ¼ 0, road grade ¼ 0,
and speed ¼ 90km/h), or the reference level (e.g., truck
position ¼ 2; see Figures 7–10).

Truck speed
When the truck speed increases, there is a 95% prob-
ability for participants to reduce manual driving and
increasingly use CACC at all time gaps (see Table 2).
The BRM predicts that the probability of manual driv-
ing decreases from 100% to 7.8% when the truck
speed increases from 20 km/h to 90 km/h (condition-
ing on occupancy ¼ 0, truck position ¼ 2, road grade
¼ 0). Also, Gap 3 is most likely to be used (mean
probability ¼ 54.4%) and Gap 1 the next (mean prob-
ability ¼ 22.1%) when driving at the speed of 90 km/h
on a flat road without traffic (see Figure 7).

Figure 5. The epochs of each test drive on the map. Since
GPS on the third truck failed on 05/03/2017, the coordinates
of its epochs were estimated using the second truck’s GPS
coordinates based on synchronized timestamps from
both trucks.
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Occupancy
There is a 95% probability that participants use Gaps 4
and 5 more often than driving manually on highways with
increasing occupancy (see Table 2). When the occupancy
increases from 0 to 0.25, the BRM predicts that the prob-
ability of choosing manual driving mode is stable at mean
probability of 1.7% �7.8%, while the mean probability of
using Gap 3 and 4 is 44.7% and 44.1%, respectively, domi-
nating the CACC use (conditioning on speed ¼ 90km/h,
truck position¼ 2, road grade¼ 0; see Figure 8).

Road grade
When the road grade changes from negative (down-
hill) to positive (uphill), there is a 95% probability for

participants to switch from manual driving mode to
CACC mode (see Table 2). Participants are more
likely to drive manually on downgrades (road grade
between �5.0 and �2.5), but use CACC, especially at
Gaps 1 and 3, on the flat or uphill roads (see Figure
9). For example, if driving the second truck at speed
of 90 km/h on a flat road without traffic, the truck
driver is expected to select Gaps 1 and 3 with a mean
probability of 22.2% and 54.4%, respectively.

Truck position
There is a 95% probability for participants to reduce
the use of Gaps 1 and 3 and increase the use of Gap
5, to some extent, in the third truck (see Table 2).
Even though the mean probability of choosing Gap 5
is increased to 11.3% in the third truck (from 1.6% in
the second truck), Gap 3 is still the most selected
option among all, with a mean probability ¼ 46.5%
conditioning on speed ¼ 90 km/h, occupancy ¼ 0,
road grade ¼ 0 (see Figure 10).

Discussion

CACC represents a promising technical approach to
automate the time gap control in truck platooning to
promote safety and fuel efficiency. Truck drivers with
on-road experience using CACC have shown positive
attitudes toward this technology (Castritius, Hecht,

Table 2. Summary of the posterior probability distribution of the coefficients (effects).
Effect Parameter Estimate Est. error Lower 95% CI Upper 95% CI

Population level Intercept1 bintercept, 1 –12.3 2.37 –17.19 –7.82
Intercept2 bintercept, 2 –8.02 1.67 –11.48 –4.96
Intercept3 bintercept, 3 –10.45 1.45 –13.36 –7.71
Intercept4 bintercept, 4 –18.74 3.23 –25.47 –12.98
Intercept5 bintercept, 5 –18.8 2.94 –24.98 –13.46
Speed1� bspeed, 1 0.14 0.02 0.10 0.19
Speed2� bspeed, 2 0.09 0.02 0.06 0.12
Speed3� bspeed, 3 0.14 0.02 0.11 0.17
Speed4� bspeed, 4 0.20 0.04 0.14 0.27
Speed5� bspeed, 5 0.19 0.03 0.13 0.25
Occupancy1 boccupancy, 1 –6.95 4.52 –15.92 1.77
Occupancy2 boccupancy, 2 –0.26 5.03 –10.31 9.53
Occupancy3 boccupancy, 3 5.97 3.65 –0.90 13.38
Occupancy4� boccupancy, 4 16.39 4.83 7.19 26.03
Occupancy5� boccupancy, 5 11.58 4.87 2.14 21.09
Road Grade1� bgrade, 1 0.78 0.12 0.56 1.02
Road Grade2� bgrade, 2 0.53 0.13 0.28 0.79
Road Grade3� bgrade, 3 0.57 0.10 0.38 0.76
Road Grade4� bgrade, 4 0.78 0.14 0.51 1.07
Road Grade5� bgrade, 5 0.52 0.14 0.26 0.79
3rdPosition1� bposition, 1 –1.4 0.30 –1.98 –0.84
3rdPosition2 bposition, 2 0.07 0.31 –0.56 0.67
3rdPosition3� bposition, 3 –0.64 0.24 –1.12 –0.18
3rdPosition4 bposition, 4 –0.68 0.35 –1.37 0.03
3rdPosition5� bposition, 5 1.58 0.35 0.91 2.27

Group level SD (Intercept1)� rpid, 1 3.91 1.31 2.16 7.18
SD (Intercept2)� rpid, 2 2.38 0.79 1.29 4.35
SD (Intercept3)� rpid, 3 1.34 0.45 0.70 2.44
SD (Intercept4)� rpid, 4 1.20 0.54 0.48 2.55
SD (Intercept5)� rpid, 5 2.32 0.79 1.21 4.20

Note. The symbol � indicates a 95% (or higher) probability for the effect to occur.

Figure 6. The correlation between the usage and preference
ranking of the time gaps.
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Figure 7. The conditional effect of truck speed on the use of CACC when other variables are fixed (occupancy ¼ 0, truck position
¼ 2, road grade ¼ 0). The solid lines indicate the mean probability and the colored areas represent the 95% credible interval. “m”
represents manual mode and the numbers 1� 5 represent Gaps 1� 5.

Figure 8. The conditional effect of occupancy on the use of CACC when other variables are fixed (speed ¼ 90km/h, truck position
¼ 2, road grade ¼ 0). The solid lines indicate the mean probability and the colored areas represent the 95% credible interval. “m”
represents manual mode and the numbers 1� 5 represent Gaps 1� 5.
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Figure 9. The conditional effect of road grade on the use of CACC when other variables are fixed (occupancy ¼ 0, truck position
¼ 2). The solid lines indicate the mean probability and the colored areas represent the 95% credible interval. “m” represents man-
ual mode and the numbers 1� 5 represent Gaps 1� 5.

Figure 10. The conditional effect of truck position on the use of CACC when other variables are fixed (speed ¼ 90 km/h, occu-
pancy ¼ 0, road grade ¼ 0). The dots indicate the mean probability and the bars represent the 95% credible interval. “m” repre-
sents manual mode and the numbers 1� 5 represent Gaps 1� 5.
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et al., 2020; Yang et al., 2018). To further understand
driver-CACC interaction, we investigated drivers’
actual use of CACC for truck platooning on suburban
and rural freeways in Northern California and its rela-
tionship with their preference for time gaps.
Moreover, we used a Bayesian approach to analyze
the effects of truck speed, traffic density, road grade,
and truck position on the use of CACC.

The nine truck drivers used Gap 3 the most, which
is consistent with their highest preference for this
time gap: Gap 3 was neither too small to provide suf-
ficient front-road view, nor too large to encourage
unwanted cut-ins (Yang et al., 2018). Also, their usage
of time gaps correlated with their preference – they
spent less time on their less favored time gaps (see
Figure 6). Although Gap 4 was not commonly used, it
was still preferred by most drivers, perhaps because its
size was similar to Gap 3 but did not increase the
view blockage (Yang et al., 2018). Additionally, there
is an outlier in Figure 6 – a senior participant
reported the lowest preference for Gap 1, which he
used the most. This implies that the final decision on
preference may be influenced by safety concerns, such
as following social norms to maintain sufficient head-
way for collision avoidance, especially from experi-
enced truck drivers (e.g., Zhang & Kaber, 2013).

However, Castritius, Dietz, et al. (2020) found that
truck drivers preferred the small gap of 15m (equiva-
lent with time gap 0.6 s in 90 km/h) in truck platoon-
ing on German public highways, showing diversity in
time gap preferences across countries. The study by
Castritius, Dietz, et al. (2020) differs from our study
in several ways, including additional automated steer-
ing control, fewer gap options (15m vs. 21m), later
hours of the day (6� 11 PM), different highway con-
ditions (e.g., traffic intensity, road regulations), and
younger truck drivers (mean age ¼ 39.3 years). Future
research should identify the factors contributing to
different preferences and uses of CACC among truck
drivers from different countries to support an inter-
national standard of time gaps selection for automated
truck platooning.

The engagement of CACC is affected by truck
speed. According to the BRM, the truck driver is most
likely to take control of the truck when its speed
(0� 60 km/h) is much lower than the speed limit
(90 km/h), normally at the start or the end of a trip,
or in dense traffic on highways. But higher traffic
density (occupancy) does not always lead to lower
truck speed. By definition, it could be caused by a
large number of vehicles passing the detector, even at
high speed (Jia et al., 2001). Hence, high traffic

density alone, without reducing truck speed, is not
necessary to affect the probability of disengaging
CACC (see the first plot in Figure 8). When the truck
platoon slows down in heavy traffic, the cut-in
vehicles increase, or the vehicle-following clearance
gap may be reduced to an uncomfortable level, both
discouraging CACC engagement (Yang et al., 2018).

If the truck speed is maintained at 90 km/h, the
BRM predicted that truck drivers are most likely to
choose Gaps 3 and 4, the ones they preferred, as
occupancy increases. The time gaps may not prevent
cut-ins as well as smaller time gaps, but they provide
better visibility for truck drivers to respond to the sur-
rounding traffic. It is worth noting that the accuracy
of occupancy in each epoch depends on the quality
(e.g., not all detectors use double loops) and density
of detectors (e.g., fewer detectors on the highway I-5)
of PeMS. The possible noise in the measure of occu-
pancy could affect BRM’s estimation of the relation-
ship between occupancy and CACC usage. Outward-
facing cameras and sensors may be considered in
future research to estimate the instant traffic sur-
rounding the truck platoon, complimenting PeMS.

Large negative grades tended to cause CACC disen-
gagements. Truck drivers were more likely to switch
to manual driving mode on downgrades because the
braking systems controlled by the prototype CACC
could not generate enough deceleration to compensate
for the acceleration on downgrades (e.g., the steep
Altamont Pass; Yang et al., 2018). When driving on
flat or uphill roads, truck drivers often switched back
to CACC mode, especially at Gaps 1 or 3, showing
less concern with the insufficient acceleration (Yang
et al., 2018) to maintain speed on the upgrades.

Although the majority of the participants neither
noticed any difference between the second and third
truck nor preferred a specific truck position (Yang
et al., 2018), the BRM estimated that truck drivers
reduce the use of Gaps 1 and 3 and use Gap 5 more
often in the third truck. This is more likely to be asso-
ciated with the control differences between the two
following trucks - the third truck had poorer braking
performance than the second truck (Yang et al.,
2018). We cannot find noticeable evidence about time
gap selection differences specifically due to truck pos-
ition, implying flexibility in forming ad-hoc CACC
strings “on the fly”.

Limitations and future research directions

Although statistical differences were found in the ana-
lysis of CACC usage, the small sample size may not
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represent the diversity of the full truck driver popula-
tion. Also, our three-hour test drive on local highways
did not provide enough opportunities for exposure to
other driving-related factors, such as time of day, trip
lengths, road curvature, and weather condition.
Further research is needed to collect more diverse
driver data in a wider range of scenarios to statistic-
ally explore the relationships between these factors
and the use of CACC. Moreover, participants in this
study followed the experimenters’ instructions to per-
form lane changes, thus further research is still needed
to investigate the naturalistic lane change decision
making and performance in CACC-enabled truck pla-
tooning. Additionally, the implemented CACC was
still an advanced research prototype rather than a
commercial product, so it had several limitations that
may have affected the usage of CACC in these tests,
such as occasional unreliability and jerkiness in the
speed control, and wireless communication errors
(Yang et al., 2018).

Conclusion

In this case study, we analyzed the use of CACC for
truck platooning on suburban and rural freeways in
Northern California and the factors affecting it to pro-
vide insight into the design and implementation of
CACC for the trucking industry. Truck drivers’ pref-
erences among CACC time gaps were found to influ-
ence their selection of these time gaps – the most
preferred Gap 3 (1.2 s) earned the highest usage while
the less preferred time gaps (e.g., Gap 2¼ 0.9 s) were
not used much. According to the BRM, truck drivers
are more likely to disengage CACC in low speed traf-
fic (usually due to high traffic density on highways)
or on downgrades (due to insufficient braking con-
trol). They are more likely to use CACC, especially at
Gap 3, when the speed is around the speed limit or
driving on flat or uphill roads. Truck position, by
itself, does not affect the use of CACC. These findings
suggest that driver-preferred time gaps (e.g., Gap
3¼ 1.2 s), freeway traffic conditions close to free-flow
speed, and smooth and responsive brake controls are
key factors to encourage CACC engagement and gain
its potential benefits for the trucking industry and
traffic systems.
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